

P:|D\DESX00000119\0400CAD\SHEETS\Smith_Rock|RH-PL-DESX119_B-A01.dwg 9/12/2023 3:00 PM Corey Spielman

INDEX OF SHEETS, CONT.	
ROADWAY DETAILS	
SHEET NO.	DESCRIPTION
BAO1	Typical Section
BAO2	Typical Section
BBO1	Details
BB02	Details
ROADWAY CONSTRUCTION	
C01	General Construction
COIA	Profile
TRAFFIC CONTROL	
EAO1	Traffic Control Details
EAO2	Detour Plan
	BRIDGE
SHEET NO.	DESCRIPTION
Bridge Name - Structure No. 24285	
J01	Plan And Elevation
J02	General Notes And Typical Section
J03	Geotechnical Data
j04	Foundation Plan
105	Prestressed Slab Details
J06	Bent Details
107	Wingwall Details

ABBREVIATIONS

ACP	Asphalt concrete pavement
Approx.	Approximate
Br.	Bridge
Bt.	Bent
Btm.	Bottom
Btwn.	Between
CL.	Centerline
co.	County
Comp.	Compacted
Conc.	Concrete
Const.	Construct
Cont.	Continuous
Coord.	Coordinate
Ctr.	Center
Ctrs.	Centers
Cr	Cubic yards
Dia.	Diameter
Dwg.	Drawing
Dwy.	Driveway
E	Exposure (curb)
Ea	Each
Ease	Easement
El.	Elevation
Elev.	Elevation
Emb.	Embankment fill
Exc.	Excavation
Exp.	Expanding
Extg.	Existing

ABBREVIATIONS, Cont.

$\begin{array}{ll} & \text { Full D } \\ \text { FL } & \text { Flow lin } \\ \text { Ft. } & \text { Feet, }, \text { ooo } \\ \text { Hk. } & \text { Hook }\end{array}$
$\begin{array}{ll}\text { Horiz. } & \text { Hook } \\ \text { Horizontal }\end{array}$
Inch, Inches
Install
$\begin{array}{ll}\text { Inst. } & \text { Install } \\ \text { Jt. } & \text { Joint } \\ \text { Ksi. } & \text { Kiopounds per square inch } \\ \text { LF. } & \text { Linear feet }\end{array}$
$\begin{array}{ll}\text { LF. } & \text { Linepoundset } \\ \text { Lt. } & \text { Rt. } \\ \text { Lintt } / \text { Right }\end{array}$
$\begin{array}{ll}\text { Lt. / Rt. } & \text { Left / Right } \\ \text { Max. } & \text { Maximum }\end{array}$
$\begin{array}{ll}\text { Max. } & \text { Maximum } \\ \text { Min. } & \text { Minimum } \\ \text { No. / Nos. } & \text { Number(s) }\end{array}$
$\begin{array}{ll}\text { No. / Nos. } & \text { Number(s) } \\ \text { Nom. } & \text { Nominal } \\ \text { OD } & \text { Outside diameter }\end{array}$
Point from tangent to circular curv
Portland Cement Concrete
Portable Changeable Message Sign
Perforated
Perpendicular
Point on horizontal curve
Point on tangent
Proposed
Proposed
Perforated Steel Square Tube
Pavement
Roadway
Required
Reference
Reference
Right of Way
Supima
Superimposed Dead Load
Slope
Schedule
Schedule
Square feet
Shoulder
Sheet
Stainles
Stainless steel clamp
Station
Standard
Symmetric
Traffic Control Devices
Traffic Control Measures
Traffic Contra
Thickness
Temporary sign support
Typical
Varies
Vertical

-Midwest Cuardrail System Type
-Midwest Guardrail System Types
-Placement of Cuardrails on Slopes
-Thrie Beam Guardrail
-Thrie Beam Guardrail Transition
-Guardrail and Metal Median Barrier Parts (29" Rail Height)
-Midwest Cuardrail System Standard Hardware (Nuts, Bolts, Washers and Misc.) Midwest Cuardrail Systems Crading for Terminals

- Midwest Cuardrail System Non-Flared Energy-Absorbing Termina -Midwest Guardrail Syste
-Wood Breakaway Posts
-Asphalt Concrete Pavement (ACP) Details -Surface Edge Details
-Drainage Curbs
-Approaches and
Aproaches and Non-Sidewalk Driveways
- Barbed and Woven Wire Fences
-Fence Gates
-Check Dams Type 1, 3 and 4
-Sediment Barrier Type 2, 3, and 4
-Thrie-Beam Rail and Transition
-Bridge Approach Slab
-3-Tube Curb Mount Rail
-3-Tube Curb Mount Rail Transition
-30" Precast Prestressed Slab
-Precast Prestressed Box and Slab Details
-Installation Details Milepost Marker Posts
-Pavement Marking Standard Detail Blocks
-Wood Post Sign Supports
Tables, Abrupt Edge and PCM
Temporary Barricades
-Temporary Sign Supports
Temporary Sign Su
-Insure Details
2-Lane, 2-Way Roadway
-2-Lane, 2-Way Roadways

(1) Const. ACP approach - 2 (See dwg. no. RD715 for details)
(2) Remove extg. cattle guard
(3) Relocate extg. irrigation pipe. Coord. with property owner
(4) Inst. sediment barrier, Type 3 (See dwg. no. RDIO30 for details)
(5) Const. PCC drainage curb Const. PCC drainage curb
(See dwg no. RD701 for details)
(6) Inst. 12' gate
(See dwg. no. RD820 for details)
(7) Inst. class 50 riprap slope armor - $18^{\prime \prime}$ thkn.
(8) Const. gravel access using 6 "thk. agg. base - 10 cy
(9) Sta. "S" $55+65$ to Sta. "S" $56+35$, Lt.

Const. type 1 fence
(10) Remove extg. field fence

general notes for all details

1. For transition details, see appropriate bridge standard drowings.
Eliminate thrie beam to W-beam rail element when type 4 rail is used.
2. Place radius identification plate (For details, see drg. no. RD415).
3. Shop fabricate all radius rail to dimensions shown (14'-9" radius is min. allowable for
thrie beam rail.
4. Roil elements:

* Thrie beam
ral
* 2 - 12 gouge rail elements
$2-12$ gouge rail elements
** Thrie beam roil:
$1-12$ gauge rail element

5. Anchor and end piece shown are to be used only for private driveways/approach roods. An approved end treatment is required on public roadways.

$\frac{\text { Bridge Rail End Protection }}{\text { Scale: No Scale }}$

(1) ACP approach - 2 (For details, see sht. BBO1)
(2) Sta. "S" $56+09$ to Sta. "S" $56+32, R t$. Const. guardrail to bridge rail transition Const. guardrail anchor, type 1 modified
(For details, see BBO2)
(3) Sta. "S" $56+09$ to Sta. "S" $56+32$, Lt. Const. guardrail to bridge rail transition
Const. guardrail anchor, type 1 modified (For details, see BBO2)
(4) Sta. "S" $54+91.1$ to Sta. "S" $55+89.0$, Rt. Const. guard
$W=0, E=0$

5' (Type 3)
Const. guardrail terminal, non-flared
Test level 3
Const. guardrail anchor, type 1 modified (For details, see BBO2)
(See dwg. nos. BR209, RD402, RD403,
RD406. RD407, RD RD419, RD420, RD442 \& RD451)
(5) Sta. "S" $54+91.1$ to Sta. "S" $55+89.0$, L Const. guardrail - 12.5' (Type 3) $W=0, E=0$
Const. guardrail terminal, non-flared Test level 3 (For details, see BBO2)
(6) Sta. "S" $57+04.0$ to Sta. "S" $57+73.3$, Rt. Const. guardrail to bridge rail transition Const. guardrail - 12.5' (Type 3) Const. guard
$W=0, E=0$
Const. guardrail terminal, non-flared
Test level 3 Test level 3
(7) Sta. "S" $57+04.0$ to Sta. "S" 57+73.3, Lt. Const. guardrail to bridge rail transition Const. guardrail - 12.5' (Type 3) $W=0, E=0$ Const. guardrail terminal, non-flared Test level 3
(8) Remove extg. field fence-70' Const. Type I fence - 70' (For details, see sht. BBOI)
(9) Inst. 4 " white line ($(W)-400$
(See dwg. no. TM500)
(10) Inst. double yellow no-pass line (D) -400 (See dwg. no. TM500)
(11) Remove extg. Co. Br. No. 15452
(12) Structure no. 24285 Const. structure -
Rdwy width 32^{\prime} (For sht. nos., see sht. A02, Bridge)
(13) Maintain \& protect extg. irrgation main crossing
(14) Extg. cattle guard
(For details, see sht. BBO1)
(15) Extg. irrigation pipe.
(For details, see sht. BBOI)
(16) Inst. check dam, type 3-4 (See dwg. no. RDI005 for details)
(17) Inst. sediment barrier, Type 3-400 (See dwg. no. RD1030 for details)
(18) PCC drainage curb-60' (For details, see sht. BBOI)
(19) Inst. 12' gate
(See dwg. no. RD820 for details)
(20) Riprap slope armor - 18 " thk
(For details, see sht. BBOI)
(21) Maintain \& protect extg. headwall
(22) Const. gravel access
(23) Remove and save extg. OM-3L object marker Remove extg. object marker post
Reinstall OM- 3 object marker on new milepost marker post in front of bridge end, behind guardrail (See dwg. no. TM222)
(24) Remove and save extg. OM-3R object marker Remove extg. object marker post Reinstall OM-3R object marker on new milepost Reinstall OM - iR object marker on new milepost
marker post in front of bridge end, behind guardrail
general notes:

1. Seed disturbed areas as directed by the engineer 2. Maintain access to approaches at all times. Align face of drainage curb with face of curb Align face
on bridge

[^0]

BIDDING PLANS

BIDDING PLANS

Provide all materials and perform all work according to the "Oregon Standard Specifications for Construction 2021 ". Bridge is designed in accordance with the 2020 edition of the "AASHTO LRFD Bridge Design Specifications (incluading interim revisions)" and the October 2022 edition of the "ODOT Bridge Design Manual", with an allowance of 40 ps for present wearing surface and 40 psf for future wearing surface and all of the following Live Loads:

Service and Strength-I Limit States:
HL-93: Design truck (or trucks per LRFD 3.6.1.3) or the design tandems and the design lane load.
Strength-II Limit State.
ODOT Type STP-5BW Permit truck
ODOT Type STP-4E Permit truck
Seismic design is performed in accordance with the "AASHTO Guide Specifications for LRFD Seismic Bridge Design" ("AASHTO LRFD Bridge Design Specifications") as modified by the October 2022 edition of the "ODOT Bridge Design Manual". The Horizontal Peak Ground Acceleration Coefficients (PCA) for 1000 -year return (Life Safety) is 0.11 g , based
0.90 .

Provide all reinforcing steel according to ASTM Specirication A706, or AASHTO 31 (ASTM A615) Grade 60. Provide field bent bars according to ASTM Specification A706. Use the following splice lengths (unless shown otherwise). Reinforcing Splice Lengths (Class B) Grade $60 \mathrm{f}^{\prime} \mathrm{c}=4.0 \mathrm{ksi}, \lambda_{r c}=0.4,2^{\prime \prime}$ min. cl. cover
\qquad

Increase all splice lengths 30% for horizontal or nearly horizontal bars so placed that more than 12" of fresh concrete is cast below the bar.
Splice reinforcing steel at alternate bars, staggered at least one splice length or as far as possible, unless shown otherwise.
All reinforcing shall have $2^{\prime \prime}$ of concrete cover unless shown otherwise.
All reinforcing spacing is intended to be maximum unless shown otherwise.
Provide concrete and prestressing steel in precast prestressed units according to detail plans.
Provide a $3 / 4$ " chamfer on all exposed concrete edges unless noted otherwise.
Provide Class HPC 4500-1" or $1 \frac{1}{2}$ " concrete for approach slabs.
Provide Class 4000-11/2", 1 ", or $3 / 4^{\prime \prime}$ concrete for all other concrete.
See Foundation Plan for Foundation Design Notes.
Field verify all dimensions and elevations prior to beginning work.
Remove all sections of the existing bridge from within the canal limits, and restore channel to existing condition.

PERMIT TRUCK DIAGRAMS
No Scale

Slabs, see Dwg. BR422
TYPICAL SECTION
Scale: $3 / 16^{\prime \prime}=1^{\prime}-0^{\prime \prime}$

$\begin{array}{c\|} \hline \text { STRUCTURE NO. } \\ 24285 \end{array}$		D EVANS OCIATES Inc.		ROAD DEPARTMENT		
$\begin{gathered} \hline \text { BDS DWG No. } \\ 110976 \end{gathered}$						
${ }^{\text {Calc. Book }}$		North Unit Canal_Smith Rock Way_44.3488/121.115 SMITH ROCK WAY BRIDGE \#15452 REPLACEMENT PROJECT NE SMITH ROCK WAY DESCHUTES COUNTY				
DESCHUTES		Designer: Makenzie Ellett Drafter: Dustin Altenburg	Reviewer: Amanda Blankenship Checker: Brett Karnes			
\% Dine		GENERAL NOTES AND TYP	ical section	$\begin{aligned} & \hline \text { SHEETNO. } \\ & \hline 002 \end{aligned}$		

UNIT DESCRIPTIONS

ASPHALTIC CONCRETE
：CRUSHED ROCK（CP）；grey，dry to damp，medium dense，$\pm 3 /$－inch
minus angular rock，（base rock）．
甭 Silty SAND（SM）and Silty SAND，scattered to曝brown，and dark grey，non－plastic silt，damp to wet，loose to dense，fine to medium sand，fine subangular gravel，subangular basaltic cobbles． weak cementation，（fill，eolian deposits，and
eolian deposits transitioning to bedrock）．
圈 Silty SAND，some gravel（SM）：light brown to Siry SAND，some gravel，dMm；light biown
brown－plastic silt，damp to moist，very loose to very dense fine to medium sand，fine
subangular gravel，fill and eolian deposits）．

BASALT：dark grey，slightly weathered to
fresh，soft to very hard（R2 to R5），close
moderately close joints are planar to
irreqular very rough，and open to clo
irregular，very rough，and open to closed，
some vesicles to highly vesicular，（Basalt of some vesictes to hol
Newberry volcano）．

IEGEND

$24=$ Standard Penetration Test（SPT）
－＝Geotechnical Test Boring（BH）
CS－1－1 $=$ Core Sample Interva
RQD＝Rock Quality Designation
Rec＝Percent Core Sample Recover
$q_{u}=$ Unconfined Compressive strength

GENERAL NOTES

Elevations are based on North American Vertical
Datum 1988 （NAVD88）．
2．l＇Contour Interval
3．Geotechnical data shown on this drawing are consolidation of information and／or revision in
terminology from the drill logs．The drill logs terminology from the drill logs．The drill logs used in compiling this drawing are available upon request
Contractor shall refer to geotecannical reports and drill logs and information therein．
4．In accordance with ASTM D1586－84，N－values are reported
as noted．
Refer to the ODOT Soil and Rock Classification Manual（1987）for a description of the terms used
Borings were sampled with a hammer efficiency Borings w
of 85.5% ．

TEST BORING	CORE RUN	\％REC	HARDNESS	RQD	qu （psi）
$B H-1$	$C S-1-1$	93	$R 5$	87	16,230
	$C S-1-2$	82	$R 5$	54	
	$C S-1-3$	92	$R 3$ to $R 4$	78	4,950
	$C S-2-1$	93	$R 2$ to $R 3$	73	5,734
	$C S-2-2$	94	$R 1$ to $R 3$	77	
	$C S-2-3$	92	R2 to $R 3$	74	2,934
	$C S-2-4$	100	$R 2$ to $R 3$	92	
	$C S-2-5$	98	$R 1$ to $R 3$	78	

BIDDING PLANS

For General Notes and details not shown, The superimposed dead load (SIDL) is 85 Ibs./ft 2 . which
see Dwgs. BR422 \& BR445. see Dwgs. BR422 \& BR445. includes the present wearing surface and bridge rails.

ACWS BUILD-UP DETAIL No Scale

Form $11 / 2$ " concrete pad integrally with Bent. Allow concrete to cure 3 days or until concrete obtains design strength. Place $1 / 2$, grout layer immediately
before placing slabs. Place elastomeric bearing pads, preformed expansion joint filler and prestressed slastomeric bearing pads, preformed expansio bearing across full width of slab. If uniform bearing is not achieved, lift slab and repeat procedure. Any excess grout protruding above bottom of bearing pads shall be removed immediately after placing slabs.

STRUCTURE NO. 24285	EDPROF
$\begin{gathered} \hline \text { BDS DWG No. } \\ 110980 \end{gathered}$	
calc. Book	
$\begin{aligned} & \text { HWY: } 2184-03 \\ & \text { M.P.: } 3.50 \end{aligned}$	
$\begin{array}{c\|} \hline \text { COUNTV } \\ \text { DESCHUTES } \end{array}$	$\psi_{i} \hat{N}_{1}$
$\begin{gathered} \hline \text { DAIE } \\ 09 / 2023 \end{gathered}$	RENEWS: 12-31-2023

	$\begin{array}{l\|l} \text { ROAD } \\ \text { DEPARTMENT } \end{array}$	
SMITH ROCK WAY BRIDGE \#15452 REPLACEMENT PROJECT NE SMITH ROCK WAYDESCHUTES COUNTY		
Designer: Makenzie Ellett Drafter: Dustin Altenburg	Reviewer: Amanda Blankenship Checker: Brett Karnes	
BENT DETAILS		$\begin{gathered} \text { SHEET No. } \\ \text { JO6 } \end{gathered}$

FINAL ELECTRONIC DOCUMENT
AVALIABBELEPON REQUEST

BIDDING PLANS

WINGWALL ELEVATION
Scale: $3 / 8^{\prime \prime}=1^{\prime}-0^{\prime \prime}$

BIDDING PLANS

SECTION THRU RAIL ELEMENT

THRIE BEAM BACK-UP PLATE (For detail not shown, see "Section Thru Rail Element")

THRIE BEAM SPLICE

STEEL POST ASSEMBLY

The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.	All materials shall be in accordance withthe current Oregon Standard Specifications.			
	OREGON STANDARD DRAWINGS THRIE BEAM GUARDRAIL 2021			
	DATE	REVSION DESCRPPTION		
	${ }^{\text {cal }}$			

* See general note 4

SYMMETRICAL THRIE BEAM TRANSITION ELEMENT
sedion show, ing sedion revised

TYPICAL THRIE BEAM TRANSITION ELEMENT

General notes for all details on this sheet:

1. See appropriate guardrail standard drawing(s) for details not shown
2. See appropriate bridge standard drawing(s) for transition guardrail detail and installation limits at bridge ends.
3. All rail sections shall be lapped in the direction of adjacent traffic.
4. Slot layout per manufacturer with appropriate post and block.

Effective Date: June 1, 2023 - November 30, 2023

BIDDING PLANS

General notes for all detalls on this sheet

1. See appropriate guardrail standard drawing(s) for details not shown.
2. For details of guardrail connections to structural handrails, see special details or Standard Drawings as called for on plans.
3. All indicated welds shall attain the full strength of the section welded.
4. Radius dimensions, in feet to the nearest 0.5 foot, shall be placed on the plate with a raised weld bead replacing the letters "HHH", shown on the Radius Identification Plate detail. Digits shall be $1 \frac{1 / 2 "}{} \mathrm{~min}$.
. The guardrail radius identification plate is to be mounted on the back side of the rail element with the lowest splice bolt nearest the P.C. of the guardrail radius.

SNOW LOAD (OPTIONAL) (In area of heavy snow,
as directed by the engineer)

ALTERNATIVE No. 2

$\stackrel{5}{2}$

RADIUS IDENTIFICATION PLATE
(See general note 4)
(See general note 4)

ALTERNATE 1

ELEVATION
TYPE C END PIECE
(2) RECTANGULAR PLAIN ${ }^{3}$ USE ON BACK OF POST

WASHERS

L (in.)	Thread Length (in.)
$1^{1 / 4}$	$1^{1 / 8}$ min.
2	$1^{1 / 4} \mathbf{~ m i n . ~}$
10	4 min.
18	4 min.
25	4 min.

POST OR SPLICE BOLT AND NUT

Radius identification
RADIUS IDENTIFICATION PLATE MOUNTING DETAIL

BASE PLATE DETAILS
(For additional details, see Std. Dwg. BR266)
(Use when depth of cover is liess
(1) Furnished \& installed by structure contractor when shown on structure plans.
(2) $6^{\prime \prime}$ min. penetration into concrete slabs other than bridge decks. Cast in ace or core and install using approved resin bonding system.
(3) Not required if "Snow Load" washer option is used.

(4) Use rectangular washer under bolt head and nut on Type C End Piece as shown. | NOTES: THIS DRAWING IS RETAINED FOR MAINTENANCE PURPOSES. |
| :--- |
| DO NOT USE FOR NEW CONSTRUCTION. |

Effective Date: June 1, 2023 - November 30, 2023

5/8" DIA. RECESSED HEX NUT

ALTERNATIVE No. 1

ALTERNATIVE No. 2
5/8" GUARDRAIL POST/SPICE BOLT (BUTTON HEADED) Use in area of heavy snow,
as directed by the engineer directed by the engineer
(See general note 6)

RADIUS IDENTIFICATION PLATE
(See general note 4)

5/8" DIA. CARRIAGE BOLT

Radius identification Radius identification
plate (See detail)
(See general note 5)

RADIUS IDENTIFICATION PLATE MOUNTING DETAIL

SNOW LOAD
SNOW LOAD ${ }^{(1)}$ POST WASHER RAIL WASHER

PLAIN WASHER ${ }^{\text {@ }}$ Use on back of post.

General notes for all details on this sheet
. See appropriate guardrail standard drawing(s) for details not shown.
2. For details of guardrail connections to structural handrails, see special details or Standard Drawings as called for on plans.
. All indicated welds shall attain the full strength of the section welded.
4. Radius dimensions, in feet to the nearest 0.5 foot, shall be placed on the plate with a raised weld bead replacing the letters "HHH",
shown on the Radius Identification Plate detail. Digits shall be $1 / 2 \mathrm{~min}$. height and $3 / 4$ " max. width. Plate shall be galvanized ter placement of digits.
5. The guardrail radius identification plate is to be mounted on the back side of the rail element with the lowest splice bolt nearest
6. When required by the plans, a Snow Load Post Washer shall be used on the backside of the post and a Snow Load Rair Washer shall be place rail element face Snow Load Rail Washers shall not be installed terminals.

SUPPLEMENTARY NOTES

(a) Not required if Snow Load Post washer option is used.
(b) Use rectangular Snow Load Rail washer under bolt head and nut on Type C End Piece as shown.
© Furnished \& installed by structure contractor when shown on structure plans.
(d) $6^{\prime \prime}$ min. penetration into concrete slabs other than bridge decks. Cast in place or core and install using approved resin bonding system.

PLAN

BASE PLATE DETAILS

(For additional details, see Std. Dwg. BR266)
(Use when depth of cover is less (Use when depth of cover is less
than normal for post installation.)

The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the ole responsibility of the user and should not be used without and should not be used without Professional Engineer

[^1]

** Length of need calculation will determine quantity of Type 2A required.

GENERAL NOTES FOR ALL DETALLS ON THIS SHEET:

1. See appropriate standard drawing(s) for details not shown.

Guardrail at indicated positions is required for protection at bridge ends.
Additional guardrail is to be installed as required by guardrail warrant and fastened to bridge.
3. Face of guardrail at locations shown above must match face of bridge curb or bridge rail on
structure without curb. .
4. Trailing ends (Freeway, multiliane and similar one-way facilities) not exposed to opposing traffic (a) Guardrail terminals, use a Downstream Anchor Terminal (DAT) (RD438), Type B end piece and (b) Ao not flare.
drawing ends, omit transition guardrail \& Type 3 guardrail. Use bridge connection (Bridge H) and guardrail as required in plans.
expansion slots to be provided at bridge end connections.
See dwg. no. RD412 "MII
OINT" details and notes
6. Where bridges employ guardrail in lieu of handrail or vehicular barriers, adjacent connecting quardrail runs shall be the same type.
7. (a) All bolts except adjustment bolts shall be drawn tight on rails and components on initial installation) Final tightness check on rail and component bolts and re-tightening as required to be done 30 day er initial installation.
8. See project plans for details not shown. See dwg, no. RD482 for Type 3 , Nested W-Beam details. For 8. See project plans for details not shown. See dwg. no. RD482 for Type 3, Nested W-Beam details.
transition guardrail detail and installation limits at bridge ends, see applicable bridge drawings.
9. "W" distance is measured from face of guardrail at end post, exclusive of end piece.
10. The slope from the edge of the shoulder into the face of the guardrail should not be steeper than IV: 10 H when the guardrail is within $12^{\prime}-00^{\prime \prime}$ from the edge of the shoulder. Paving of widened should to face of posts in both ends of guardrail runs is required.

FLARE RATE TABLE	
POSTED SPEED (MPH)	FLARE RATE a:b
70	$15: 1$
60	$14: 1$
55	$12: 1$
50	$11: 1$
45	$10: 1$
40 or less	$9: 1$

The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used with first consult a Red without

Effective Date: June 1, 2023 - November 30, 2023

W-BEAM WOOD BREAKAWAY POST
THRIE BEAM WOOD BREAKAWAY POST

General notes for all detalls on this sheet

1. See appropriate guardrail standard drawing(s) for details not shown
2. Use only $6 " \times 8$ " 545 wood posts, trim to fit steel tube if reqd

FRONT
TOP OF RAIL HEIGHT 35" (Nom.)

TOP OF RAIL HEIGHT 31"

The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.	All materials shall be in accordance withthe current Oregon Standard Specifications.			
	OREGON STANDARD DRAWINGS			
	WOOD BREAKAWAY POSTS			
	2021			
	DATE REVIION DESCRIPTION			
	${ }^{\text {colc }}$ BOK.	N/A	SDR SATE-13-JAN-2020	RD451

Effective Date: June 1, 2023 - November 30, 2023

SAFETY EDGE PLACED ONLY WITH FINAL LIFT

SAFETEY EDGE FOR ASPHALT CONCRETE (NEW CONSTRUCTION)

PAVEMENT THICKNESS (T) GREATER THAN 5"

SAFETY EDGE FOR ASPHALT CONCRETE RECONSTRUCTION (INCLUDING MILL, INLAY AND OVERLAY)

SAFETY EDGE FOR
PORTLAND CEMENT CONCRETE PAVEMENT OVERLAY

GENERAL NOTES FOR ALL DETAILS ON THIS SHEET:

1. Safety edges are requirred at the outside edges of the paved roadway (edge of
travel lane or edge of paved shoulders), where the wearing surface thickness is 2 " or greater, except where indicated in the plans.
2. Construct the safety edge at a slope of $1: 1 / 1 / 2$ to $1: 2$ measured from the
. Do not cantrat
3. Do not construct safety edge at intersections, paved drives, or other
4. For total new asphalt depth of " 7 " ≤ 5 ", construct the safety edge to the full thickness of the surface and intermediate courses. For total new asphalt depth of "T" $>$, construct the safety edge to a depth of 5 " approximately
with a $1: 1$ sloped face below the safety edge. with a $1 / 1$ sloped face below the safety edge.

Effective Date: June 1, 2023 - November 30, 2023

BIDDING PLANS

NOTE:
When grades on approaches meet without vertical curves the maximum algebraic difference on crests should be 8% and on sags 12%. Grades steeper than 15% should not be used without prior approval of the engineer of record. Any driveways with slopes exceeding 12% shall be paved.

Main rdwy. base design

$$
\frac{\text { SECTION C-C }}{\substack{\text { Edge of paved shoulder } \\ \text { Existing driveway }}}
$$

$$
R=\left\{\begin{array}{l}
30 ' \text { normal (Major constr.) } \\
20 \text { ' } \text { normal (Minor constr.) }
\end{array}\right.
$$

HALF PLAN
NOTE:
Normal paving limits to extend 20^{\prime} (30^{\prime} for public road connections) from the edge of pavement or to the right of way line, whichever is les

APPROACH
P.C. CONCRETE SURFACING
$\left[\begin{array}{l}\text { Aggr. base (Or as directed) } \\ \text { Nom comp. thkn. }-8^{\prime \prime}\end{array}\right.$?

GRAVEL SURFACING

ASPHALT CONCRETE SURFACING
APPROACH AND DRIVEWAY CONNECTION SURFACING DETAILS

TYPE A
PORTLAND CEMENT CONCRETE

SECTION D-D

SECTION E-E

SECTION A-A FOR MONOLITHIC DRIVEWAYS
(1) Minimum allowable for drainage control on negatively sloped driveways.

TYPE A-1 ASPHALT CONCRETE
 SECTION D-D

$$
\begin{array}{l:l}
\text { Apron slope } \\
\text { variable } \\
& \vdots \\
\hline
\end{array}
$$

SECTION E-E

Top of
half ELEVATION (ALTERNATE APRON SLOPE) (See General Note 5)

* Curb exposure $\mathrm{E}=7$ " normal. Vary as shown on plans or as directed.

HALF ELEVATION

TABLE A					
$\underset{(\mathrm{ft})}{\mathbf{W}}$	x	K (ft)			
		5	6	8	10
		w_{1} (ft)			
12	3	15	15	15	15
14		17	17	17	17
16		19	19	19	19
18		21	21	21	21
20		23	23	23	23
22	4	27	28	29	30
24		29	30	31	32
26		31	32	33	34
28		33	34	35	36
30		35	36	37	38
32	5	41	42	44	46
34		43	44	46	48
36		45	46	48	50
Where a travel lane is constructed adjacent to the curb line, use $\mathbf{1 6}^{\prime}$ W min. for residence and $30^{\prime} \mathrm{W}$ to W_{1} for both. Do not add the 5 to W_{1} when 4 ' min. shldr. or bikeway is included in the typical.					

GENERAL NOTES FOR ALL DETAILS ON THIS SHEET:
Driveway details shown on this drawing are to be used on roadways where there are no
existing or planned sidewalks in driveway vicinity. For driveways 1 ocated in a sidewalk see existing or planned sidewalks in driveway vicinity. For driveways 1 ocated in a sidew
Std. DWgs. RD720, RD721, RD725 and/or RD730, RD735, RD740, RD745, RD750. Width of driveway (W) as shown on plans or as directed.
3. K is the distance from back of curb to back of driveway (10' max.).
Where existing driveway is in good condition, construct only as much as required for satisfactory connection with new work.
"Alternate Apron Slope" used only where plans designate. Alternate Apron Slope may also be used at local jurisdiction's request when approved by the Project Manager.
Increase thickness of asphalt concrete and stone base where shown on plans.
F. Increase thickness of asphalt concrete and stone
F. For curb details, see Std. Dwgs. RD700 \& RD701.

For expansion and contraction joint requirements, see applicable curb and sidewalk standard drawings.
-

BIDDING PLANS

(1) Fence stays
9/2/gange
thkn. wire

TABLE 1 (For wood posts)

FENCE	R	UNITS REQUIRED
	(ft)	R
Types $\left\{\begin{array}{l}1, \\ 1,-5 w ~ \& ~ \\ 2\end{array}\right.$	20 or Less	* None
	$20-330$	A
	Over 330	$\mathrm{~A} \& \mathrm{~B}$

* Unit A required at gate post.
Either Unit A or Units $A \& B$ are required in existing
fence line at intersection with new

BRACE RAIL CONNECTION
End

Effective Date: June 1, 2023 - November 30, 2023

GATE COMPONENTS								GATE POSTS (1) ②					
								WOOD				STEEL	
GATE OPENING (ft)		SCHEDULE 40 GALV. STEEL PIPE FRAME		SCHEDULE 40 GALV. STEEL PIPE BRACE			TRUSS RODS	* ROUND			$\begin{gathered} \text { SQUARE } \\ \hline \begin{array}{c} \text { NOM. SIZE } \\ \text { (in) } \end{array} \\ \hline \end{gathered}$	SCHEDULE 40 GALV. STEEL PIPE	
SINGLE GATE	double gate	$\underset{\text { (in) }}{\substack{\text { NOM. DIA. }}}$	$\begin{aligned} & \text { MIN.WT. } \\ & (\mathrm{B} / \mathrm{ft}) \\ & \hline \end{aligned}$	NUMBER	NOM. DIA. (in)	MIN. WT. (lb/ft)		DIA	SMALL	MD (in)		NOM. DIA. (in)	MIN. WT. (lb/ft)
UP thru 6	UP thru 12	1	1.68	-	-	-	-	5	7	6	6×6	21/2	5.79
7 thru 11	13 thru 22	11/4	2.27	1	1	1.68	1	5	7	6	6x6	$31 / 2$	9.11
12 thru 16	23 thru 32	11/2	2.72	2	11/4	2.27	2	7	9	8	8×8	6	18.97
17 thru 20	33 thru 40	2	3.65	2	11/4	2.27	2	9	11	10	10×10	,	18.97

(1) Gate posts on each side of a gate opening to be the same size. At a double gate installation with unequal width gates, size of both posts At a doube gate instaliation with unequal width gates, size of both
to be as indicated for single gate installation of the wider gate width.
(2) For length, setting and bracing details see end posts, Std. Dwg. RD810.

* Max. taper 1" in 4

General notes for all details on this sheet:

1. Gates shown are for use with Fence Types 1, 1-5W and 2 .
2. See Std. Dwg. RD810 for details not shown.
3. See project plans for details not shown.
4. Add fence grounding as required.

The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.	All materials shall be in accordance withthe current Oregon Standard Specifications.			
	OREGON STANDARD DRAWINGS			
	FENCE GATES			
	2021			
	DATE	REVISION DESCRIPTION		
		- N/A	SDRR - 13-JAN-2020	RD820

Effective Date: June 1, 2023 - November 30, 2023

BIDDING PLANS surfaces. Overlap bags $12^{\prime \prime}$ minimum at each joint.
2. Type 4 - Tightly abut or overlap ends of sandbags at each joint.
3. Spacing between check dams for all check dam types shall comply with the typical profile section shown above.

SECTION A-A
BIOFILTER BAG CHECK DAM - TYPE 3
NOT TO SCALE

The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.	All materials shall be in accordance withthe current Oregon Standard Specifications.			
	OREGON STANDARD DRAWINGS			
	CHECK DAMS TYPE 1, 3 AND 4			
	2021			
	DATE	REMOVVE CALC Cook		
	01-2021			
	${ }_{\text {coll }}^{\text {coil }}$	- N/A	SDRR 20-JAN-2021	RD1005

Effective Date: June 1, 2023 - November 30, 2023

BIDDING PLANS

BIOFILTER BAG / SAND BAG BARRIER - TYPE 2 AND 4
NOT TO SCALE

NOTES:
For Type 2 barrier, drive stakes flush with top of bag and into undisturbed ground a min
placed on paved surface.
2. For Type 2 and Type 4 barriers, space bags (L) so that the elevation of point "A" is less than or equal to the elevation of

Type 2 - Biofilter bags
Type 2 - Biofiter
Type 3 - Wattles
Type 4 - Sand bags

BARRIER SPACING

INSTALL PARALLEL ALONG CONTOURS AS FOLLOWS

The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.	All materials shall be in accordance withthe current Oregon Standard Specifications.			
	OREGON STANDARD DRAWINGS			
	SEDIMENT BARRIER TYPE 2, 3 AND 4			
	2021			
	- ${ }_{\text {DATE }}$			
	01-2021			
		- N/A	${ }_{\text {SDR }}^{\text {SARE }}$ 20-JAN-2021	RD1030

Effective Date: June 1, 2023 - November 30, 2023

BIDDING PLANS

Effective Date: June 1, 2023 - November 30, 2023

Effective Date: June 1, 2023 - November 30, 2023

BIDDING PLANS

GENERAL NOTES FOR PRESTRESSED BOXES AND SLAB

Boxes and slabs are designed for live and superimposed dead loading as shown in the General Notes for the Project.
Provide the class of concrete shown in the Slab or Box Schedule with nominal maximum size aggregate of 1 or $3 / 4$. Transfer prestress after the concrete
Select a kerway grout from the OPL for filling kerways, lifting blockouts and tie rod blockouts.
Allow traffic on the bridge only after keyway grout has reached design strength.
Provide reinforcing steel as specified in the General Notes for the Project.
Provide smooth dowels conforming to AASHTO M31, Grade 60 (ASTM A615, Grade 60), ASTM F1554, Grade 55 or ASTM A529, Grade 55.
Provide $1 / 2$ " diameter 7 wire low relaxation prestressing steel strand conforming to AASHTO Specification M203 (ASTM A416), Grade 270 Supplement 7 . Tension strand initially to 31.0 kips per strand (after harping deflected strand). Debond strands where specified using either split or solid plastic sheathing with a minimum wall thickness of 0.025 .
Provide high strength tie rods conforming to ASTM A449. Provide heavy hexagon nuts conforming to ASTM A563. Provide hardened steel washers
conforming to ASTM F436. Hot-dip galvanize tie rods, plates, nuts and washers (except DTIs) after fabrication
Tighten tie rods to 39 kips (minimum) using mechanically galvanized direct tension indicators (DTIs) conforming to ASTM F959and ASTM F3125 , $\Delta{ }^{1}$
Keep boxes and slabs upright at all times. Support them within $2^{\prime \prime}-0^{\prime \prime}$ of the ends during storage to prevent excessive camber, overstress or fuire) Locate transport supports and lifting devices within $2^{\prime}-00^{\prime \prime}$ of the ends of boxes and slabs. Transportboxes and slabs after the concrete has reached the
28 day design strength Fill keyway to top with grout. Taper grout wh
do not match.

BREAKOUT ANGLE DETAIL $\begin{gathered}\text { Angle is acute } \\ \text { angle between } s \text { slab }\end{gathered}$

NOTE:
Provide steel angle conforming to ASTM A36. Hot-dip galvanize breakout angle after fabrication.
Shift headed studs as required, no more than 2 ", to Shift headed studs as requ
avoid prestressing strands.

PARTIAL ELEVATION CHAMFER DETAIL

Effective Date: June 1, 2023 - November 30, 2023

GENERAL NOTES:

1. POST AND BRACKET ASSEMBLIES
(a) The nominal weight of the post shall be 2 pounds per lineal foot (b) Bracket assemblies shall conform to subsection 2910.10 of the current Oregon Standard Specifications for Construction.
2. INSTALLATION
(a) If roadway conditions prohibit locating the milepost sign at the milepoint, it may be moved up to 50 feet in either direction. If it cannot be located within this variation, it should be omitted.
(b) Signs shall be mounted to posts with $3 / 16$ " diameter aluminum blind rivets that conform to subsection 2910.40 of the current Oregon Standard Specifications for Construction.
(c) If the milepost sign is located within 25 feet of a delineator, the delineator hould be moved or deleted
Installation of the post and sign panel shall conform to subsection 840.41 of the current "Oregon Standard Specifications"

INSTALLATION

The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.	All materials shall be in accordance with the current Oregon Standard Specifications			
	OREGON STANDARD DRAWINGS			
	INSTALLATION DETAILS MILEPOST MARKER POSTS			
	DATE REVISION DESCRIPTION			
	${ }^{\text {colc }}$ BOK.	N/A	SDRTE- 10-DEE-2009	TM222

Effective Date: June 1, 2023 - November 30, 2023

BIDDING PLANS

General Notes.
Wood posts are available in the following commercial lengths: $12^{\prime}, 14^{\prime}, 16^{\prime}, 18^{\prime}, 20$
2. Materiai, shall be Douglas fir No. 1 and according to Section 02110.40 .
3. For horizantal and vertical clearances of permanent signs refer to TM200 and of
temoprary signs refer to TM822.
4. Wood post desian
4. Wood post design in accordance with the 5th Edition 2009 AASHTO Standard Signals.
5. Use the 3 second gust wind speeds shown on 7 M671 for the site specific sign location
. Ceneral desig
The sign width to \sin.
8. Permanent signing uses an II $=0.71$ for a recurrence interval of io years.
8. Permanent signing uses an ir $r=0.71$ for a recurrence interval of 10 years.
9. Temporary signing uses an in $r=0.45$ for a recurrence interval of 1.5 years.
10. Posts protected by barrier or guardrail do not require field drilled holes.
11. 4" $\times 4^{\prime \prime}$ posts should not be used in snow plow areeas.

Post Embedment Installation:

Excavate the hole at least 12 "larger in diameter than the diagonal dimension of the post. Maintain at least 6 " of space around the edges of the post to accomoda
Align the post in the hole to a vertical position.
3. The space around the wood post shall be backfilled to finished ground surface
4. Backfill with selected general backfill meeting the requirements of oo330. 13. 5. Place in layers not greater than 6 inches.

Dampen during place nt if too dry to co coavation area around the post.
7. Dampen during placement if too dry to compact properly.
8. Replace and finish the surface around the post to match the surrounding surface.
PERMANENT WOOD POST TABLE

- Linear Interpolate $X^{*} Y^{* *}, 3$ post values for - See note 8

		$(X * Y * Z)$ in f^{3} - Maximum												Field Drilled Hole Diameters	PostEmbedment Depth "D"
		3 Second Cust Wind Speed (TM671)													
		85 MPH				95 MPH				105 and 110 MPH					
		Number of Posts				Number of Posts				Number of Posts					
		1	2	$\begin{gathered} 3^{* *} \\ x=15^{\prime} \end{gathered}$	$\begin{gathered} 3^{*} \\ x \geq 20^{\prime} \end{gathered}$	1	2	$\begin{gathered} 3^{* *} \\ x=15^{\prime} \end{gathered}$	$\begin{gathered} 3^{*} \\ x \geq 20^{\prime} \end{gathered}$	1	2	$\begin{gathered} 3^{* *} \\ x=15^{*} \end{gathered}$	$\begin{gathered} 3^{*} \\ x \geq 20^{\prime} \end{gathered}$		
	$4^{\prime \prime} \times 4^{\prime \prime}$	122	244	261	366	98	196	210	294	88	176	188	264	Not Req'd	$4^{\prime \prime}-0^{\prime \prime}$
50	$4^{\prime \prime} \times 6^{\prime \prime}$	257	514	550	771	205	410	439	615	185	370	396	555	$1^{1 / 2}$	$5^{\prime}-0^{\prime \prime}$
気 ${ }_{0}$	$6^{\prime \prime} \times 6^{\prime \prime}$	426	852	912	1278	341	682	730	1023	308	616	660	924	$2^{\prime \prime}$	$5^{\prime}-0^{\prime \prime}$
	$6^{\prime \prime} \times 8^{\prime \prime}$	779	1558	1669	2337	624	1248	1337	1872	563	1126	1206	1689	$3^{\prime \prime}$	$7^{\prime \prime}-0^{\prime \prime}$

TEMPORARY WOOD POST TABLE*** $\begin{gathered}\text { ** } \\ \text { signs greater than } 15 \text { 'and less than } 20 \text { : }\end{gathered}$

Face of post -
that the sign is attached.
SECTION A-A

Effective Date: June 1, 2023 - November 30, 2023

NOTES

1. The wind velocity map as shown is adapted from AASHTO 2001 4th Edition "Standard Specificiations for Structural Supports for Highway Signs, Luminaires and Traffic Signals", Appendix C, Figure C-3 and Section 3, Figure 3-2. It uses the wind speed map shown in Figure 1609 of the 2007 Oregon Structural Code The wind velocitiess shs in the State with special wind regions.
The Exposure Cotaghown a
2. The mean recurrence interval is 50 -Years.
3. Mountanious terrain, gorges, and ocean promontories are classified as
4. Mountanious terrain, gorges, and ocean promontories are classified as
special wind regions and shall be examined for unusual wind conditions.
5. The Interval Height (Kz) is 30 ft.
6. Areareas with full exposure to ocean winds shall be designated 110 mph areas. 8. Areas in Multnomah and Hood River counties with full exposure to Columbia River Corge winds shall be designated 110 mph areas.
g. Localities may have adopted wind speed higher that shown on this map. Those higher wind speed shall be used.

The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.	All materials shall be in accordance with the current Oregon Standard Specifications			
	OREGON STANDARD DRAWINGS			
	3 SECOND GUST WIND SPEED MAP			
	DATE	REVISION DEECRPTTION		
	${ }_{\text {coilc }}^{\text {coic }}$	N/A	SDR DATE O6-AAN-2012	TM671

BIDDING PLANS

TAPER TYPES \& FORMULAS	
TAPER	FORMULA
Merging (Lane Closure)	"L"
Shifting	"L"/2 or $1 / 2 \mathrm{L"}$
Shoulder Closure	"L"/3 or $1 / 3 \mathrm{LL}$
Flagging (See Drg. TM850)	$50^{\prime}-100^{\prime}$
Downstream (Termination)	Varies (See Drawings)

©
Use Pre-Construction Posted Speed to select
the Speed from the Tables below:

TEMPORARY BARRIER FLARE RATE TABLE	
\star SPEED (mph)	MINIMUM FLARE RATE
≤ 30	$8: 1$
35	$9: 1$
40	10.1
45	$12: 1$
50	$14: 1$
55	$16: 1$
60	189.1
65	$9: 1$
70	$20: 1$

TRAFFIC CONTROL DEVICES (TCD) SPACING TABLE				
\star SPEED (mph)	Sign Spacing (ft)			Max. Channelizing Device Spacing (ft)
	A	-	C	
20-30	100	100	100	20
35-40	350	350	350	20
45-55	500	500	500	40
60-70	700	700	700	40
Freeway	1000	1500	2640	40

NOTES:

- Place traffic control devices on 10 ft . spacing for intersection and access radi When necessary, sign spacing may be adjusted to fit site conditions.
Limit spacing adjustments to 30% of the A A dimension for all speeds.
notes
- When paved shoulders adjacent to excavations are less tha
four feet wide protect longitudinal abrupt edge as shown.
- Use aggregate wedge when abrupt edge is 2 inches or greate

Extg. pavement

NOTES:

- Install PCMS beyond the outside shoulder, when possible.
- Use the appropriate type of barricade panels for PCMS location Right shoulder, use Type B BIII)R
Left shoulder, use Type (III)
- Use six drums in shoulder taper on 20^{\prime} spacing. The drums and
barricade may be omitted when PCMS is placed behind a roadside barrier.
- Detail as shown is used for trailered and non-crashworthy components of - Smart Work Zone Systems

PORTABLE CHANGEABLE MESSAGE
SIGN (PCMS) INSTALLATION

NOTES:

- Install Flagger Station Lighting beyond th
- Use six tubular markers in shoulder tape

Place cart / generator / power supply off of the
shoulder, as far as practical.

FLAGGER STATION LIGHTING DELINEATION

NOTES

- Abrupt edges may be created by paving, operations, excavations or other roadway work. Use abrupt
abrupt edges of 1 inch or greater.
- If the excavation is located on left side of traffic, replace the

- Continue signing and other traffic control devices
- If roll-up signs are used, attach the correct (CW21-9) plaques sto the sign face using hook and loop
place roll-up signs in advance of barricades.

GENERAL NOTES FOR ALL TCP DRAWINGS:

- Signs and other Traffic Control Devices (TCD)
- Place a barricade approx. 20 ahead of all
- Arrows shown in roadway are directional arrows
to indicate traffic movements.

Arrows shown in roadway are
to indicate traffic movements.

- All signs are 48 " $\times 48$ " unless otherwise shown. Use fluorescent orange sheeting for the
background of all temporary warning signs.
- 。 Temp. Plastic Drums See TCD Spacing
for max. spacing.
- - $28^{\prime \prime}$ Tubular Markers See TCD Spacing Tab
for max. spacing.

WIIII UNDER CONSTRUCTION

- All diamond shaped warning signs mounted on barrier sign supports shall be 36 " by $366^{\prime \prime}$.
- Low speed highways have a pre-construction posted speed of 40 mph or less.
High speed highways have a pre-construction posted speed of 45 mph or higher
- Do not locate sign supports in locations designated for bicycle or pedestrian traffic.
- Combine drawing details to complete temporary traffic control for each work activity.
- Coordinate and control pedestrian movements through a Temporary Accessible Route using
- To be Troafic Cod by Dos,

To be accompanied by Dwg. Nos. TM820 \& TM821

Effective Date: June 1, 2023 - November 30, 2023

Effective Date: June 1, 2023 - November 30, 2023

NOTES:

- Do not block bicycle lanes, sidewalks, or TPAR's with sign supports. Maintain minimum widths for these facilities
- To be accompanied by Dwg. Nos. TM670, TM671, TM687, TM688 \& TM689.

notes:
- Drill additional holes so sign can be rotated 90 degrees

All structural steel shall conform to ASTM A36.
Support fits both 32 " and 42 " tall "F" barrier
Use for supporting a maximum 12 sq . ft. of total sign area

- Place support at connection between two concrete barrier sections.

Weld steel according to American Welding Society (AWS) D.1.1
Do not use clipped signs.

- Follow manufacturer recommendation when installing signs on barrier

The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.	All materials shall be in accordance withthe current Oregon Standard Specifications			
	OREGON STANDARD DRAWINGS			
	TEMPORARY SIGN SUPPORTS			
	DATE REVIION DEECRIPTION			
		N/	SDRR SATE- 01-UL-2020	TM822

Effective Date: June 1, 2023 - November 30, 2023

BIDDING PLANS
 Use advisory speed
pre-construction posted speed, or as directed. "XX MPH" placard shall not exceed a posted speed of 35 mph .

NOTES:

- Place Advance Flagger and additional signing when traffic queues exten - Place additional Tubular Markers for Flagger and Advance Flager
Stations according to FLAGGER STATION DELINEATION detail.
- Relocate initial "ROAD WORK AHEAD" (W20-1) sign in advance of additional
"BE PREPARED TO STOP" (W3-4) and Flagger Ahead (CW23-2) signs, as shown.

NOTE:

- When using pilot cars with flaggers to control traffic during paving operations,
the Tubular Marker spacing along centerline may be increased to 200 ' within the Tubular Marker spacing along centerlin
the Activity Area, as shown or as directed.
- Include "WAIT FOR FLAGGER" (CR4-23) signs mounted on Type II Barricade
located approx. 50' before each Flagger
- Coordinate and control pedestrians movements through the TPAR using Flaggers,
 provide a minimum of 4 ' of width for the TPAR.

2-Lane, 2-Way Roadway ONE LANE CLOSURE

GENERAL NOTES FOR ALL DETAILS:

- The "SIGNAL AHEAD" (W3-3a) sign may be substituted with
- Cover existing passing zone signing, as directed.
- Install temporary striping as required.
- To determine Taper Length ("L"") and Buffer Length ("B""),
use the "MINIMUM LENGTHS TABEE" hown on DWg. No. TM800
- To determine sign spacing A, B, and C, use "TRAFFIC
CONTROL DEVICES (TCD) SPACING TABLE" on Dwg. No. TM800. - Install a "BICYCLES ON ROADWAY" (CW1 1-1) sign in advance of
the closure when a abike lane is closed, or when the shoulder is
closed and bikes are expected. the closure when a bike lane is
closed and bikes are expected.
- At night, flagger stations shall be illuminated according to the
FLAGGER STATION LIGHTING DELINEATION detail on DWg No. TM800

To be accompanied by Dwg. Nos. TM820,
TM821 \& TM854.

- Automated Flagging Assistance
- ${ }^{28} 8^{\prime \prime}$ ' Tubular Markers on 20' max. spacing for
flagger tapers and stations
. . . $28^{\prime \prime}$ Tubular Markers See TCD Spacing Table on
Sem The
TM80 for max. spacing.
\square UNDER TRAFFIC
Ully UNDER CONSTRUCTION
Whmw CONSTRUCTION UNDER TRAFFIC

NOTE:

- Use a minimum of 3 tubular markers in shoulder taper

LAGGER STATION DELINEATION

Effective Date: June 1, 2023 - November 30, 2023

notes

- Relocata initial "ROAD WOR AHEAD" (w20-1) sign in advance of adaditional

Move sign as needed for extended traffic queues, or Move sign when sight distance is restricted

NOTE:
When using pilot cars with flaggers to control traffic during paving operations,
the Tubular Marker spacing along centerline may be increased to 200' within the Tubuar Marker spacing along center
the Activity Area, as shown or as directed.

- Include "WAIT FOR FLACGER" (CR4-23) signs mounted on Type II Barricade Cord approx. 50 before each Flagger.
Coordinate and control pedestrians movements through the TPAR using Flaggers,
other TCM, or as directed. When the existing shoulder is greater than or equal to other TCM, or as directed. When the existing shoulder is
4 'wide provide a minimum of 4 ' of width for the TPAR.

2-Lane, 2-Way Roadway
ADVANCE FLAGGER FOR EXTENDED TRAFFIC QUEUES
ONE LANE CLOSURE

Ceneral notes for all detalls

- This drawing is only intended to be used where an Automated Flagger Assistance
Device (AFAD) cannot be utilized.
- The "FLAAGER" (CW23-2) symbol sign shall be used only in conjunction with the
"BE PREPARED TO STOP" (W3-4) sign. - Conerid to (N3-4) sign.
- Cover existing passing zone signing, as directed
- Install temporary striping as required.
- To determine Taper Length " "L") and Buffer Length ("B"), use the
"MINIMUM LENGTHS TABLE" shown on Dwg. No. TM800.
- To determine sign spacing A, B, and C, use
"TRAFFIC CONTROL DEVICES (TCD) SPACING TABLE" on Dwg. No. TM800.
- Install a "BICYCLES ON ROADWAY" (CW1 1-1) sign in advance of the closure
when a bike lane is closed, or when the shoulder is closed and bikes are expected.
- At night, flagger stations shall be illuminated according to the
FLAGGER STATION LIGHTING DELINEATION detail od DWg No. TM800
- To be accompanied by Dwg. Nos. TM820 \& TM821.
.......... ${ }^{28 "}$ "Tubular Markers on 10' maxu spacaing arr
intersection radii.
28" Tubular Markers on 20' max. spacing for
flagger tapers and stations
- • • $28^{\text {" Tubular Markers }}$ See TCD Spacing Table o
TM800 for max. spacing.
\square
under traffic
TIID UNDER CONSTRUCTION

NOTE:

- Additional Traffic Control Measures (TCM) may be required for all legs of the intersection

2-Lane, 2-Way Roadway ONE LANE CLOSURE, INTERSECTION

Effective Date: June 1, 2023 - November 30, 2023

[^0]: To Be Accompanied by Standard Dwg. Nos.
 TM670, TM671 TM800 TM820 TM821, TM8 TM670, TM671, TM800, TM820,
 TM840, TM841, TM850 \& TM855.

[^1]: Effective Date: June 1, 2023 - November 30, 2023

